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Abstract

We here reveal the initiation of ductile failure in metals at the nanometer scale by molecular dynamics simulations coupled with a
novel analytical model. This proceeds by the emission of a special type of dislocation shear loop, which can expand as a partial or perfect
dislocation, evolve into a prismatic loop through reaction, or develop into twins. Molecular dynamics (MD) simulations predict a strong
dependence of the stress required for the initiation of plastic flow at the surface of the void for both Cu (a model fcc metal) and Ta (a
model bcc metal). The decrease in stress with increasing void size is also analyzed in terms of a new analytical approach based on the
energetics of dislocation loop emission. For both fcc (copper) and bcc (tantalum) metals initiation of plastic flow in MD simulations
takes place at voids as small as a tri-vacancy (radius R � 0.1 nm). Extensive calculations for tantalum combined with the analytical
model, which tracks the simulations, enable extrapolation to R � 300 nm, in the realm of second phase particles and inclusions. Thus
we conclude that this is a general mechanism of tensile failure in pure monocrystalline metals where other initiation sites are absent.
� 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

There are two extremes of failure mechanisms when
metals separate under tensile forces: (a) ductile failure by
void initiation, growth, and coalescence; (b) brittle failure
by crack initiation, propagation, growth, and bifurcation.
The first involves plastic deformation while the latter is,
strictu sensu, a bond breaking process. For engineering
materials there are important intermediate regimes of crack
propagation involving void initiation and growth ahead of
the crack tip [1]. Dislocation emission from the crack tip is
also an important toughening mechanism [2]. Strain rate,
temperature, and stress state are three external parameters
that can have a profound effect on the mechanisms. Body
centered cubic (bcc) metals are particularly affected by
these parameters, and can exhibit both brittle and ductile
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fracture. The technological implications of this transition
are of primary importance. Weertman [3] proposed a crite-
rion for the ductile to brittle transition. The Weertman cri-
terion [3] uses the ratio between tensile and shear strength;
if rShear/rTensile > 7 the material fails in a brittle manner.
However, face centered cubic (fcc) metals can also exhibit
diverse failure mechanisms, with high strain rate tensile
loading (such as spalling) favoring intergranular fracture
over transgranular fracture, which occurs at low strain
rates. Indeed, this was observed for copper [4–6].

Ductile failure is initiated in regions that cannot support
the local stresses and proceeds by plastic deformation as
voids grow. In engineering alloys these regions are ubiqui-
tous: inclusions, second phase particles, grain boundaries,
local regions with high stresses, and vacancy complexes.
The potency of these sites, i.e. the stress at which they
are activated, varies widely in metals. It is well known that
in high purity metals the ductility is quite high and that
they often exhibit a knife-edge fracture. Conversely, the
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presence of second phases and inclusions has a deleterious
effect on ductility [7].

Molecular dynamics is a powerful tool to interrogate
representative volumes of metals of up to 107 nm3 at times
on the order of 10�9 s. It is well suited to investigate dislo-
cation effects. Exhaustive molecular dynamics (MD) simu-
lations of deformation in fcc metals have been carried out,
focusing on dislocation configurations [8–10], plastic defor-
mation [11], grain size effects [12–14], and void initiation
and growth [15–19]. However, bcc metals have not been
the subject of the same number of studies. One of the main
reasons is the difficulty of implementing adequate inter-
atomic potential functions which work properly at the
large stresses and strains reached during void deformation.

We here report the results of a systematic investigation
of the effect of void size on the stress required for the initi-
ation of plastic flow. We have established the minimum
void for which initiation of plastic flow takes place. The
computational predictions are coupled with a new physi-
cally based analytical model which enables extension of
this mechanism to void radii of 300 nm. This is in the realm
of second phase particles and this mechanism thus has a
multiscale character.

One may argue that the simple emission of a shear loop
from a void cannot lead to its increase in size, and this is
Fig. 1. (a) Initial configuration of the material decomposed into cohesive slidin
translating material outwards. (c) Coordinated shear by dislocation terminatin
with an annulus of plastic deformation and an elastically deformed area (adap
indeed correct [20] if the loops detach from the void. This
is why the emission of prismatic loops is easier to concep-
tualize as a mechanism for void growth. Indeed, both types
of loops were considered in an earlier analytical model [21].
Shear loops in void expansion are special and their extrem-
ities remain attached to the void surface. We here present
an argument developed earlier [22] for the formation and
growth of a void by coordinated shear in two or more
planes. The simple two-dimensional analog scheme pre-
sented in Fig. 1a illustrates this. Let us imagine a body of
rectangular section composed of four trapezoidal blocks
and let us assume that the four inclined interfaces are cohe-
sive (i.e. they can slide but cannot separate) and that the
vertical interface is free. When traction is applied horizon-
tally, as shown in Fig. 1b, the two trapezoidal blocks move
vertically through shear along the four glissile interfaces. In
doing so they produce a lateral extrusion of material and
create an internal void. Volume constancy is obeyed.
Fig. 1c shows the same case for numerous glissile interfaces
along two non-parallel shear planes. Coordinated shear
along these interfaces produces the same transfer of mate-
rial. These unit glide processes, which are in this case con-
fined in the material, can be considered as dislocations.
Each one creates a step on the void surface. In the general
three-dimensional case several (five or more) slip systems
g trapezoidal blocks. (b) Coordinated shear of blocks generating voids and
g in the body of the material. (d) Schematic representation of void growth
ted from Bringa et al. [22]).



Fig. 2. Schematic showing the uniaxial tensile strain loading of a sample
with a void and emission of a dislocation from the plane of maximum
shear: (a) side view; (b) top view.
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can be activated simultaneously or sequentially, creating
the necessary material transfer operation. This region with
dislocations forms a plastic annulus (which has a radius
that is a multiple of the void radius). This plastic annulus
is surrounded by the elastically deformed material, a classic
plasticity problem. Fig. 1d shows the two regions.

The formation of shear loops is shown in Fig. 2. The
side view shows the plane of maximum shear stress making
an angle of 45� with the tangent to the sphere. One plane is
shown, and the emission of a dislocation is represented. As
the shear loop is emitted the region is shifted and the void
radius consequently increases. Fig. 2b shows the top view,
with the loop curving out.

These loops were analyzed in detail in previous works
by our group [15,16,21,23,24]. Marian et al. [17,18], using
the quasi-continuum (QC) method, were the first to
identify shear loops in aluminum subjected to shear.
Seppälä et al. [19] followed, using MD, but interpreted
them as prismatic loops. Traiviratana et al. [15] and
Bringa et al. [16] analyzed the shear loops and
determined the detailed crystallographic nature and
interactions of the partial dislocations. Seppälä et al.
[19] identified the leading and trailing partial dislocations
(Fig. 2 in Seppälä et al. [19]) in an fcc crystal and
speculated that at a later stage (higher stress) the loops
would completely separate from the void surface. Fig. 3
in Seppälä et al. [19] is interpreted as representing a pris-
matic loop, but is more probably a section through a
shear loop in which the leading and trailing partials rep-
resent the extremities of the segments circled. Hence the
results of Traiviratana et al. [15] and Bringa et al. [22]
are in full agreement with their MD simulations and con-
firm the mechanism postulated by Lubarda et al. [21].

2. Computational methods

We carried out MD simulations using LAMMPS [25]
with the extended Finnis–Sinclair potential [26] which gives
the correct elastic constants at zero pressure and repro-
duces the pressure dependence of the specific volume up
to values close to 500 GPa. The extended Finnis–Sinclair
potential was tested by verifying the gamma surface [27]
and comparing it with ab initio results.

We used Ta bcc single crystals with periodic boundary
conditions in all directions and studied uniaxial strain load-
ing along [001] (z-direction) in tension. The samples were
cubic, with sizes L = 30, 50, 60, 80, 100, 200 and 400 a0,
where a0 = 0.303 nm is the lattice constant, with the num-
ber of atoms in the sample being Nsample = 54,000, 250,000,
432,000, 1,024,000, 2,000,000, 16,000,000 and 128,000,000.
Simulations were carried out on a number of computer sys-
tems, from single core workstations to TeraGrid Super-
computers using 512 cores. In MD simulations the stress
components were obtained using the nominal sample vol-
ume Vsample, not the real volume (Vsample � Vvoid). There-
fore the stresses were corrected by multiplying a factor of
Vsample/(Vsample � Vvoid) to eliminate the volume error in
MD simulations when a void is present, where Vsample is
the initial volume of the sample, and Vvoid is the initial vol-
ume of the void. For copper the simulation procedure was
given in Traiviratana et al. [15].

The samples were thermalized at 300 K for 10 ps, using
a0 = 0.303 nm, but there is no thermostating during load-
ing to capture possible plastic heating effects. We used
NVE integration with a time step of 1–2 fs. The common
neighbor analysis (CNA) [28] filter was used to reveal the
defects (non-bcc atoms) generated by plastic deformation
in Ta, and the centro-symmetry parameter (CSP) [29] filter
was used for Cu.

3. Results and discussion

3.1. Mechanism of shear loop emission

The detailed nature of loop emission in fcc metals was
described by Traiviratana et al. [15] and Bringa et al. [24]
and for bcc metals by Tang et al. [23]. We here present
the basic characteristics of the initiation of loop formation
and their propagation. Fig. 3 shows a void under hydro-
static tensile loading in tantalum. In Fig. 3a a shear loop
is starting to form at the surface, whereas in Fig. 3b the
shear loops are well formed and glide along several slip



Fig. 3. Side and top views of (a) initiation of shear loop formation and (b)
a more advanced stage, showing propagating loops. The direction of the
resolved shear stress and the sign of dislocation are indicated on the side
view. Note loops terminating on the void surface on several slip systems;
hydrostatic tensile loading at a strain rate of 108 s�1, initial void radius
R = 3.3 nm.
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planes around the void surface. The shear stress direction
as well as the dislocation sign are shown for one of the
loops. Since the stress state is hydrostatic the loops being
generated on the different slip systems have the same
resolved shear stress and grow at the same velocity. The
edge component of the dislocation which forms the central
part of the loops has a greater mobility and advances. It
should be noted that the slip plane zig-zags along two
(110) and (011) planes. This was discussed in greater detail
by Tang et al. [23]. The dislocation extremities remain
embedded in the surface of the void in Fig. 3, but the dis-
locations may react and form prismatic loops if the loading
is hydrostatic, as discussed in Tang et al. [23].

3.2. Void size effects

Fig. 2 shows the configuration used in the simulations
with a void in the center. It was postulated by Lubarda
et al. [21] and demonstrated through MD simulations in
fcc metals that void growth and collapse take place through
the emission of dislocation loops at planes making an angle
of 45� with the void surface. These are the planes in which
the shear stress is maximum (radial stresses at the void sur-
face equal to zero).

The effect of strain rate was established first. The maxi-
mum shear stresses rmax (global stress averaged over the
whole sample, rmax = (rzz � rxx)/2 or (rzz � ryy)/2) for
defect nucleation for R = 2 nm at strain rates of 107, 108

and 109 s�1 are quite close under uniaxial tensile strain,
despite the fact that the evolution of the stress–strain
curves are different. Values of 6.22, 6.29, and 6.48 GPa,
respectively, were found for R = 2 nm at the above strain
rates. Two values of the shear modulus were used for nor-
malization of the maximum shear stresses: shear modulus
of {110} planes in the h111i direction Gh111i for tantalum
(bcc) and shear modulus of {111} planes in the h112i
direction Gh112i for copper (fcc).

For tantalum the normalized maximum shear stress rmax

/Gh111i for the initiation of plastic deformation was calcu-
lated using Gh111i = 52.8 GPa and mh111i = 0.275 [30], where
mh111i is the Poisson ratio of {110} planes in the h111i direc-
tion. It is plotted as a function of void radius (normalized to
the Burgers vector b) in Fig. 4a. Typical errors in the plastic
strain and maximum shear stress at nucleation were 1% and
2%, respectively. We normalized the maximum shear stress
and void radius using the shear modulus and typical Bur-
gers vector b (|b| =

p
3/2 a0 = 0.286 nm) to make them ame-

nable to comparison with other bcc metals. As can be seen
in Fig. 4a, for smaller radii (R/b 6 1–2) the stresses asymp-
totically approach a value of rmax/Gh111i � 0.07, which is
the required stress for homogeneous nucleation of defects
in a perfect sample (R = 0). This homogeneous nucleation
threshold is somehow lower than the unrelaxed ideal
strength of the material at 0 K [31] (�0.12 Gh111i using the
definition of Gh111i in Turley et al. [30]). As the void radius
increases the maximum shear stress for tantalum rmax /
G<111> decreases and asymptotically approaches a
constant value of 0.0235 when the void size R/b exceeds
� 100. In previous work on bcc metals using Finnis Sinclair
potentials [32,33] Rudd [34] observed a decrease of 24% in
the threshold stress to initiate plastic activity under hydro-
static loading for R = 12.5 nm (von Mises stress
12.85 GPa), compared with R = 1.89 nm (von Mises stress
16.49 GPa). A similar dependence of nucleation stress on
void size was reported for the bcc metal vanadium [35] sub-
ject to uniaxial tensile strain.

For fcc copper the homogeneous nucleation stress
reported by Bringa et al. [24] was rmax/G = 0.06. Using
the shear modulus along the slip direction for partial
dislocations we obtained rmax/Gh112i � 0.08 (Gh112i =
30.7 GPa).

A new model for the nucleation and emission of a dislo-
cation loop is presented here. The nucleation and emission
process, which was presented in Figs. 1–3, is shown again
in Fig. 4b. The required nucleation stress in the process
of producing a shear dislocation loop has two components

a. The creation of a new surface step during the emis-
sion process.
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Fig. 4. (a) Normalized maximum shear stress for defect generation as a
function of normalized void radius R/b. The region marked HN
corresponds to “homogeneous nucleation”, with different shear moduli
used for copper (fcc, Gh112i = 30.7 GPa) and tantalum (bcc,
Gh111i = 52.8 GPa). (b) Schematic of dislocation emission from the void
surface.
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b. The stress required to generate and bow a dislocation
loop to a radius R1 that is a fraction of the void
radius R.

The first component is evaluated using an approach akin
to that of Rice and Thomson [2,36]: they assumed that the
shear stress s1 involved in the creation of the surface step
by emitting a dislocation over a distance qb (1 < q < 10)
has the form:

s1 ¼
2cqb

p½ðqbÞ2 þ r2�
ð1Þ

where c is surface energy, and r is the distance between the
dislocation and the void surface; at the moment of emission
r = 0.

Thus one gets

s1 ¼
2c

pqb
ð2Þ

It is well known that the local stress concentration at the
void surface is void-size independent, according to isotropic
elasticity theory. Thus, a simple shear-stress threshold
criterion for dislocation nucleation will be void-size
independent. On the other hand, MD simulation results
show that the size of the generated shear dislocation loop
R1 is related to the void size R. Therefore, the shear stress
s2 required to generate and bow the dislocation to a semi-
loop with a radius R1, which has connection to void size
R, is taken into consideration to account for the void-size
dependence. A simple and general energy criterion is used
to evaluate this shear stress, although there are more realis-
tic Peierls-Nabarro based continuum models [37–39] avail-
able. The self energy of a full circular dislocation loop
with radius R1 has the form [40]:

Ufullloop ¼ 2pR1A0 ln
8R1

e2qb
ð3Þ

For a full shear loop

A0 ¼
Gb2ð2� mÞ
8pð1� mÞ ð4Þ

where G is the shear modulus, and m is the Poisson ratio.
The energy of a semi-circular shear loop connected to a

void can be assumed to have the form [40]:

U ¼ pR1A0 ln
8R1

e2qb
þ pR1A0 ln m ð5Þ

where m is a constant. The first term in Eq. (5) is the self-
energy of a semi-circular shear loop and the second term
accounts for the image interaction energy between the
semi-circular loop and the void. The image interaction be-
tween a prismatic loop and a void has been calculated by
Wolfer et al. [41] and Ahn et al. [42]. For a shear loop,
which contains both edge and screw components, an expli-
cit expression is still unavailable. Although image interac-
tions between both an infinite straight edge [43] and
screw dislocations [44] and a void have been derived in
the form of infinite series (the distance from the dislocation
line to the void center d must be larger than the void size R

to avoid a singularity in the series), they are not applicable
to the case of a shear loop attached to a void surface (d < R
for some sections of the shear loop). As an approximation
of the image interaction between a semi-circular dislocation
loop and a void, a value of m = 2.2 in Eq. (5) for the image
interaction between a semi-circular shear loop and a crack
tip (u = 0�, w = 0� in Fig. 17 in Anderson and Rice. [40]),
which is the closest to the case studied here, is used.

The work done by the local shear stress s2 near the void
surface has the form:

W ¼ s2
pR2

1

2
b ð6Þ

and is equal to the energy of a semi-circular shear loop
W = U. Equating Eq. (6) into Eq. (5) yields

s2 ¼
Gbð2� mÞ

4pð1� mÞR1

ln
8mR1

e2qb
ð7Þ

Thus the total stress s is equal to s1 + s2:

s ¼ 2c
pqb
þ Gbð2� mÞ

4pð1� mÞR1

ln
8mR1

e2qb
ð8Þ



(a) Ta, R = 1.5 nm, ε =7.325%  R = 3.3 nm, ε =4.75%  R = 7.5 nm, ε =4.125% 

       (d) Ta,  R=15 nm, ε =3.695%                       (e) Ta,  R=30 nm, ε =3.695% 

(f) Cu, R = 0.5 nm, ε =10.9%           (g) Cu,  R = 2 nm, ε =6.2%             (h) Cu, R = 4 nm, ε =4.5% 

(b) Ta,  (c) Ta, 

Fig. 5. Defects in tantalum (a–e) and copper (f–h) samples with different void radii R under uniaxial tensile strain. The loading direction [001] in (a–e) is
perpendicular to the plane of the paper. The strain rate is 108 s�1 for Ta and 109 s�1 for Cu. The color scale indicates the radial distance from the void
center. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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For uniaxial strain loading the elastic stress field around
a spherical void can be calculated and the maximum stress
concentration occurs for the meridional stress at the equa-
torial plane, 1.7277 rzz (using an isotropic Poisson ratio
m = 0.38). Considering that the radial stress at the void
surface is zero, the maximum local shear stress
smax = (1.7277 rzz � 0)/2 = 0.86 rzz, also at the equatorial
plane. The maximum global shear stress rmax is:

rmax ¼ ðrzz � rxxÞ=2 ¼ 0:193rzz ¼ 0:224smax ð9Þ
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where rxx = m/(1 � m) rzz is the lateral normal stress. Thus

rmax

Gh111i
¼ 0:224smax

Gh111i

¼ 0:224
2c

Gh111ipqb
þ bð2� mh111iÞ

4pð1� mh111iÞR1

ln
8mR1

e2qb

� �
ð10Þ

where the surface energy c and Burgers vector b are
2.49 J m�2 [45] and 0.286 nm, respectively.

The same calculation can be applied to the fcc structure
by adding a stacking fault energy term cSF to account for
the stacking faults generated [15,16,24] during partial dislo-
cation loop emission. The change in energy upon forming a
stacking fault is equated to the work of dislocation. The
energy is pR2

1cSF=2. The work of advancing the partial dis-
location, assuming that the mean advance is pR1/4, is equal
to (2R1 � pR1/4)bps3. Thus s3 = cSF/bp.

rmax

Gh112i
¼0:165smax

Gh112i

¼0:165
2c

Gh112ipqbp
þ bpð2�mh112iÞ

4pð1�mh112iÞR1

ln
8mR1

e2qbp
þ cSF

Gh112ibp

� �

ð11Þ
For copper Gh112i = 30.7 GPa is the shear modulus of

{11 1} planes shearing in the h112i direction,
mh112i = 0.182, bp = 1/6h112i = 0.148 nm is the Burgers
vector of partial dislocation, c = 1.239 J m�2 is the surface
(a) strain=0%                     

(d) ε =9.8%                   ε =

(b) strain

(e) 

Fig. 6. Nucleation of plasticity at a tri-vacancy cluster surface in tantalum unde
109 s�1 (sample size 60 � 60 � 60 a0). Planar defects (stacking faults lying on {
and ð�1 0 1Þ) nucleate at the tri-vacancy cluster (b and c), and then develop int
energy, and cSF = 44.4 mJ m�2 [46] is the stacking fault
energy. The stress concentration is 1.67 rzz (m = 0.42),
and rmax = rzz � m/(1 � m) rzz = 0.138 rzz = 0.165 smax.

The radius R1 of the dislocation loop is taken, as a first
approximation, to be half of the void radius R. Both results
from Eqs. (10) and (11) are shown in Fig. 4a. Eq. (10) (for
Ta) best matches the computational predictions in Fig. 4a
for q = 1, which is consistent with the fact that bcc metals
have smaller dislocation cores than fcc metals. This analyt-
ical model based on dislocation loop emission is not
expected to be valid for void radii R/b smaller than 1–2,
because the loop radius is smaller than the dislocation core
and the analysis breaks down. Thus a cut-off was estab-
lished at the maximum. MD simulation results under uni-
axial strain loading along the [001] orientation for Cu
[24] were recalculated at a strain rate of 109 s�1 and
300 K for comparison. The stress at the first dislocation
emission, rather than the maximum stress, was taken. Eq.
(11) (for Cu) shows a similar void dependence of the stress,
but does not track the simulations as well as Eq. (10) for
tantalum. One of the possible reasons is that for the
[00 1] loading orientation, loop nucleation and early prop-
agation are qualitatively and quantitatively different in fcc
and bcc metals, as shown in Fig. 5f–h.

In view of the simplifying assumptions, the agreement
between the computations and analytical model is consid-
ered satisfactory. Not included in the analytical model
.4%                             

10%                           ε =11% 

=9 (c) strain=9.6% 

(f) 

r uniaxial tensile strain along [001] (horizontal direction) at a strain rate of
110} planes with a non-zero Schmid factor, namely (011), ð0 �1 1Þ, (101)
o (112) and ð�1 1 2Þ twins (e and f).
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are the anisotropy, dislocation dynamics effects, and exact
radius of the loop at the instant of emission.

Faceting of small voids may also play an important role
in dislocation nucleation, as discussed for voids [24] and
nano-indentation [47] in fcc metals. The effect of size on
the geometry of voids in fcc structures were considered
by Bringa et al. [24],who showed that the facets were
{10 0} and {111}. This faceting is clearly seen in Fig. 5h,
where the {11 1} planes are marked. The steps serve as ini-
tiation regions for the biplanar shear loop shown. The
fourfold symmetry around the h100i axis was seen in the
smaller voids. In comparison, voids in our single crystal
Ta simulations are faceted with the {110} and {100}
planes forming platforms at the extremities of the h110i
axes. Three voids are shown in Fig. 4a and it can be seen
that their shape approaches a spherical morphology as
their size increases from 0.5 to 11 nm, since superimposed
{11 0} planes more closely approach the ideal configura-
tion. Hence, the following observations are applicable to
both bcc tantalum and fcc copper:
Fig. 7. (a) Front and (b) side views of twin boundaries in tantalum under u
expanding twin is thinner than the bottom. Schematic representation of (c) fr
1. The sphericity of a void decreases as the radius
decreases. The void can be considered spherical for
R = 11 nm. On the other hand, for R = 0.5 nm the void
deviates significantly from sphericity and is a
polyhedron.

2. The surface is composed of truncated steps which neces-
sarily affect the generation of defects upon stressing. One
such event is seen in Fig. 4a.

3.3. Defect generation and propagation

An earlier report on tantalum [23] showed that disloca-
tion loops are emitted and propagate predominantly on
{112} planes for a R = 3.3 nm void. Twinning also takes
place along the {11 2} planes at a high strain rate 109 s�1.
Marian and Knap [48] observed loop generation (loading
in [001]) at a 10.9 nm diameter void surface and twinning
(loading in ½�4 8 1 9�) in Ta under uniaxial loading.
Prismatic loops and a slip to twinning transition were
niaxial tensile strain at 108 s�1 (R = 11 nm). Note that the front of the
ont and (d) side views of a twin with partial dislocations.
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observed in Ta with void radii of 1.89 and 12.5 nm under
hydrostatic tension by Rudd [34] when the strain rate
was increased.

Fig. 5 shows the defects generated for different void sizes
at a strain rate of 108 s�1. In Ta, with smaller voids, perfect
dislocation loops are formed. For R > 7.5 nm twinning
overcomes slip. This is seen in the sequence in Fig. 5a–e.
This was also observed by Rudd [34]. Three void sizes for
copper are shown in Fig. 5f–h for R = 0.5, 2, and 4 nm,
respectively. The formation of biplanar loops [15,24] is
clear in the three cases. Only the leading partial disloca-
tions are formed.

3.3.1. Void sizes R/b < 1
Vacancy clusters are common in metals. The effect of

pre-existing vacancies in shock loading has been studied
before for fcc metals [49,50]. Recently Luo et al. [51] found
a vacancy-induced decrease in the spall strength of fcc Cu.
It is generally assumed that void initiation will occur at sec-
ond phase particles, impurity clusters, nano-cracks, etc.
However, in well-annealed, high purity metals initiation
at small vacancy clusters might play a role in spall.

We reduced the void size to the size of a vacancy, di-
vacancy and tri-vacancy (a R = 0.3 nm void has nine
vacancies). Heterogeneous nucleation of stacking faults at
the void surface (the required nucleation shear stress is still
close to 0.07Gh111i) was found to start for the tri-vacancy,
developing into {112} twins, as shown in Fig. 6. Although
the equilibrium concentration of mono-vacancies ceq in Ta
is only �10�46 at T = 300 K and is �5 � 10�4 at the melt-
ing point T = 3293 K (the vacancy formation energy and
entropy are 2.8 eV [52] and 2.2kB [53], respectively), and
the equilibrium concentration of di-vacancies and tri-
vacancies are much smaller due to the much higher energy
of formation (5.56 and 8.16 eV [54]), it is still possible for
their concentration to reach 10�5 at 300 K due to the gen-
eration of vacancies during plastic deformation [55]:

c0 ¼ 10�Y eþ ceq ð12Þ
where e is the plastic strain and Y is a parameter that can
vary from 2 (for multiple slip) to 4 (for single slip). For a
characteristic value of e � 0.1 the concentration can be as
high as 10�3. These non-equilibrium vacancies can form
complexes by migration, thereby decreasing their energy.
Thus one can conclude that tri-vacancies are present in suf-
ficient concentration after plastic deformation to nucleate
voids. Similar results were obtained by Bringa et al. [24]
for copper: tri-vacancies and di-vacancies acted as nucle-
ation sites for voids, mono-vacancies did not.

3.3.2. Void sizes R/b > 1

In tantalum, for void sizes R/b from 1 to 7 (R � 2 nm),
stacking faults developed into {112} twins after nucle-
ation, as seen in Fig. 5a and b. For void sizes R/b from 7
to 17 (R = 5 nm), shear loops lying on {112} planes were
formed (Fig. 5b). For larger void sizes a dominance of
twinning was observed, as seen in Fig. 5c–e, although there
are also a number of {112} dislocation loops, including
loops located at the rims of the formed twins (Fig. 5c)
and secondarily emitted loops (upper right in Fig. 5e).
The radius of curvature of the head of the dislocations
(both perfect and twinning) increases with increasing void
radius. It is also possible that emission of the second, third,
and subsequent dislocations requires less stress if they are
twinning dislocations. This could be one possible reason
for the slip–twinning transition as R increases. Detailed
views (front and side) of twins generated from the surface
of a void (R = 11 nm) and a schematic of the twin are
shown in Fig. 7. The twin thickness is approximately 12
atomic layers.

4. Summary and conclusions

1. A new mechanism for void growth in nanoscale voids is
identified in both fcc and bcc metals. Dislocation loops
are emitted from the void surface and expand as partial
or perfect dislocations, evolve into a prismatic loops
through reaction, or develop into twins.

2. The void size has a significant effect on the required
stress to initiate plasticity in metals. The shear stress
required to nucleate plasticity asymptotically
approaches the theoretical shear strength rmax/
Gh111i = 0.07 for tantalum (bcc) and rmax/Gh112i = 0.08
for copper (fcc). For 1 < R/b < 100 the stresses decrease
rapidly with increasing void size R/b and asymptotically
approach a constant value (independent of void size) of
rmax/Gh111i � 0.0235 for Ta.

3. An analytical model is proposed based on dislocation
loop emission to account for this size effect. It tracks
the simulations for tantalum closely and therefore pro-
vides a basis for extrapolation to larger voids (up to
300 nm) which are in the realm of second phase particles
and inclusions.

4. Initiation of plastic flow takes place at voids as small as
a tri-vacancy. These are present in sufficient concentra-
tion in metals by virtue of vacancy generation during
plastic deformation.

5. In tantalum (a model bcc metal), void size has an effect
on the defect generation sequence. For very small voids
(R/b < 7) stacking faults are generated and then develop
into {112} twins. For void sizes R/b from 7 to 17
(R = 5 nm) shear loops form at the void surface. For
larger void sizes the dominant defects are {112} twins.
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